Numerical prediction of SDOF-Perforated Plate Acoustic Treatment Impedance. Part 1 : Linear domain

Dr. Stéphane LIDOINE^{*}

AIRBUS France, P.O. Box MO112/4 316 Route de Bayonne31060 TOULOUSE Cedex 03, FRANCE

Dr. Isabelle TERRASSE[†]

EADS Innovation Work, 12 Rue PasteurBP76 92152 SURESNES, FRANCE

and

Dr. Toufic ABBOUD[‡] and Ahmed BENNANI[§] IMACS, XTEC, Ecole Polytechnique, 91128 PALAISEAU Cedex, FRANCE

A new numerical prediction tool has been developed in order to improve acoustics impedance predictions for typical Nacelle SDOF with perforated-plate liners, accounting for realistic geometry and flow. This method is based on domain breakdown and Linearized Compressible Navier-Stokes equations in the holes. Numerical Results are successfully compared to analytical predictions and measurements in the linear domain without flow. Next steps are non-linear effects and the influence of grazing mean flow.

Nomenclature

c_0	=	Sound velocity, m.s ⁻¹	V	=	Acoustics velocity, m.s ⁻¹
d	=	Holes diameter, m	x_1, x_2, x_3	=	Spatial coordinates, m
d_{1}, d_{2}	=	Elementary period sizes, m	Ζ	=	Reduced Impedance
D	=	Cavity lateral size, m	$Z_{cav,} Z_{res}$	=	Impedance of the cavity, of the resistive sheet
е	=	Plate thickness, m	λ	=	Wavelength, m
e'	=	Corrected thickness, m	σ	=	Porosity (POA), %
f	=	Frequency, Hz.	V	=	Kinematic viscosity, m ² .s ⁻¹
h	=	Cell depth, m	X, Xr	=	Reduced Reactance, Residual Reactance
$k = \omega / c_0$	=	Wave number, m ⁻¹	$ ho_0$	=	Air density, kg.m ⁻³
р	=	Acoustics pressure, Pa	Σ_r	=	Rigid surface
$p^{^{inc}}$, $p^{^{sc}}$	=	Incident, scattered pressure, Pa	$\varSigma^{\scriptscriptstyle +},\varSigma^{\scriptscriptstyle -}$	=	Interfaces between holes and Euler domain
R	=	Reduced Resistance	$\omega = 2\pi f$	=	Wave pulsation, s ⁻¹

I. Introduction

FAN Noise represents half of Aircraft Noise at both landing and take-off conditions. This noise source is mainly reduced thanks to Acoustic treatments installed inside nacelle inlet and bypass ducts. These treatments allow decreasing the overall Aircraft Perceived Noise Level by 4 to 5 dB at take-off and 2dB at approach. In the last decades, Airbus invested a lot in the development of nacelle low noise technologies and associated optimisation

[‡] CTO, <u>abboud@imacs.polytechnique.fr</u>

Copyright © 2007 by AIRBUS S.A.S. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

^{*} Research Engineer, Nacelle Acoustics, stephane.lidoine@airbus.com

[†] Senior Expert, Applied Mathematics and Scientific Computing, isabelle.terrasse@eads.net

[§] Research Engineer, ab@imacs.polytechnique.fr